Information

How can life survive in the water under the Antarctic ice?

How can life survive in the water under the Antarctic ice?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

If there is life in the lakes under the ice of Antarctica then how can those bacteria survive? Where do they get energy from?

https://www.google.com/amp/s/www.livescience.com/amp/64501-buried-lake-antarctica-life.html

The dark waters of a lake deep beneath the West Antarctic ice sheet and a few hundred miles from the South Pole are teeming with bacterial life, say scientists - despite it being one of the most extreme environments on Earth.


I knew Priscu and worked with some of his grad students at Montana State.

Here's one of their papers on the Lake Whillans project.

One of the more relevant findings is that many of the most abundant organisms (by genetic analysis of small subunit ribosomal RNA genes) were closely related to chemolithoautotrophic organisms. Basically, organisms that can obtain energy by oxidizing inorganic compounds. They found that there was sufficient chemolithoautotrophic carbon incorporation to support the heterotrophic demands of the ecosystem. They also found an abundance of organisms related to nitrifiers (organisms that oxidize ammonia into nitrite and nitrate), along with sufficient ammonia, suggesting that nitrification is a primary pathway of new organic carbon production in the ecosystem.

Source: Christner, Brent C., et al. "A microbial ecosystem beneath the West Antarctic ice sheet." Nature 512.7514 (2014): 310-313.


Life can persist in cold, dark world: Life under Antarctic ice explored

The first breakthrough paper to come out of a massive U.S. expedition to one of Earth's final frontiers shows that there's life and an active ecosystem one-half mile below the surface of the West Antarctic Ice Sheet, specifically in a lake that hasn't seen sunlight or felt a breath of wind for millions of years.

The life is in the form of microorganisms that live beneath the enormous Antarctic ice sheet and convert ammonium and methane into the energy required for growth. Many of the microbes are single-celled organisms known as Archaea, said Montana State University professor John Priscu, the chief scientist of the U.S. project called WISSARD that sampled the sub-ice environment. He is also co-author of the MSU author-dominated paper in the Aug. 21 issue of Nature.

"We were able to prove unequivocally to the world that Antarctica is not a dead continent," Priscu said, adding that data in the Nature paper is the first direct evidence that life is present in the subglacial environment beneath the Antarctic ice sheet.

Lead author Brent Christner said, "It's the first definitive evidence that there's not only life, but active ecosystems underneath the Antarctic ice sheet, something that we have been guessing about for decades. With this paper, we pound the table and say, 'Yes, we were right.'"

Priscu said he wasn't entirely surprised that the team found life after drilling through half a mile of ice to reach Subglacial Lake Whillans in January 2013. An internationally renowned polar biologist, Priscu researches both the South and North Poles. This fall will be his 30th field season in Antarctica, and he has long predicted the discovery.

More than a decade ago, he published two manuscripts in the journal Science describing for the first time that microbial life can thrive in and under Antarctic ice. Five years ago, he published a manuscript where he predicted that the Antarctic subglacial environment would be the planet's largest wetland, one not dominated by the red-winged blackbirds and cattails of typical wetland regions in North America, but by microorganisms that mine minerals in rocks at subzero temperatures to obtain the energy that fuels their growth.

Following more than a decade of traveling the world presenting lectures describing what may lie beneath Antarctic ice, Priscu was instrumental in convincing U.S. national funding agencies that this research would transform the way we view the fifth largest continent on the planet.

Although he was not really surprised about the discovery, Priscu said he was excited by some of the details of the Antarctic find, particularly how the microbes function without sunlight at subzero temperatures and the fact that evidence from DNA sequencing revealed that the dominant organisms are archaea. Archaea is one of three domains of life, with the others being Bacteria and Eukaryote.

Many of the subglacial archaea use the energy in the chemical bonds of ammonium to fix carbon dioxide and drive other metabolic processes. Another group of microorganisms uses the energy and carbon in methane to make a living. According to Priscu, the source of the ammonium and methane is most likely from the breakdown of organic matter that was deposited in the area hundreds of thousands of years ago when Antarctica was warmer and the sea inundated West Antarctica. He also noted that, as Antarctica continues to warm, vast amounts of methane, a potent greenhouse gas, will be liberated into the atmosphere enhancing climate warming.

The U.S. team also proved that the microorganisms originated in Lake Whillans and weren't introduced by contaminated equipment, Priscu said. Skeptics of his previous studies of Antarctic ice have suggested that his group didn't actually discover microorganisms, but recovered microbes they brought in themselves.

"We went to great extremes to ensure that we did not contaminate one of the most pristine environments on our planet while at the same time ensuring that our samples were of the highest integrity," Priscu said.

Extensive tests were conducted at MSU two years ago on WISSARD's borehole decontamination system to ensure that it worked, and Priscu led a publication in an international journal presenting results of these tests. This decontamination system was mated to a one-of-a-kind hot water drill that was used to melt a borehole through the ice sheet, which provided a conduit to the subglacial environment for sampling.

Every day in Antarctica, he would tell his team to keep it simple, Priscu said. To prove that an ecosystem existed below the West Antarctic Ice Sheet, he wanted at least three lines of evidence. They had to see microorganisms under the microscope that came from Lake Whillans and not contaminated equipment. They then had to show that the microorganisms were alive and growing. They had to be identifiable by their DNA.

When the team found those things, he knew they had succeeded, Priscu said.

The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project officially began in 2009 with a $10 million grant from the National Science Foundation. Now involving 13 principal investigators at eight U.S. institutions, the researchers drilled down to Subglacial Lake Whillans in January 2013. The microorganisms they discovered are still being analyzed at MSU and other collaborating institutions.

Christner said species are hard to determine in microbiology, but "We are looking at a water column that probably has about 4,000 things we call species. It's incredibly diverse."

Planning to drill again this austral summer in a new Antarctic location, Priscu said WISSARD was the first large-scale multidisciplinary effort to directly examine the biology of an Antarctic subglacial environment. The Antarctic Ice Sheet covers an area 1 ½ times the size of the United States and contains 70 percent of Earth's freshwater, and any significant melting can drastically increase sea level. Lake Whillans, one of more than 200 known lakes beneath the Antarctic Ice Sheet and the primary lake in the WISSARD study, fills and drains about every three years. The river that drains Lake Whillans flows under the Ross Ice Shelf, which is the size of France, and feeds the Southern Ocean, where it can provide nutrients for life and influence water circulation patterns.

The opportunity to explore the world under the West Antarctic Ice Sheet is an unparalleled opportunity for the U.S. team, as well as for several MSU-affiliated researchers who are part of that team and wrote or co-authored the Nature paper, Priscu said.

Christner, for one, was a postdoctoral researcher with Priscu and Mark Skidmore at MSU from 2002 through 2006. He is now associate professor of biological sciences at Louisiana State University. Jill Mikucki, now an assistant professor at the University of Tennessee in Knoxville, was one of Priscu's doctoral students. Skidmore is a glacial geochemist in MSU's Department of Earth Sciences. Andrew Mitchell, now at Aberystwyth University in the United Kingdom, was a postdoctoral researcher with MSU's Center for Biofilm Engineering. Alex Michaud and Trista Vick-Majors are currently earning their doctorates in Priscu's research group at MSU. Other MSU people on the team were Education and Outreach Coordinator Susan Kelly and Project Manager John Sherve.

The fact that MSU was so involved reflects the fact that it is pioneering a new field of science, Priscu said. MSU is the common ancestor of many scientists who study life in and under ice.

"I always tell my students when they come into the lab that 'We are inventing this field of science. It's working on life in ice and under ice. This field has never existed before. We thought it up. You are pioneers,'" Priscu said.

Appreciative of the opportunity to participate in WISSARD, Vick-Majors said she saw bacteria under the microscope within an hour after the first sample of water was pulled out of Subglacial Lake Whillans. Within days, she saw proof that the bacteria were active.

"It was very exciting. It will be hard to top," she said.

She added that, "If you want to do microbial ecology in Antarctic subglacial environments, John is probably the person you want to work with. I feel very lucky to have gotten the opportunity."

Agreeing, Michaud said, "Some of the graduate students joke, 'How do we top this?' We can't."

But the students can build on their WISSARD experience and gain a deeper understanding of Subglacial Lake Whillans and other subglacial habitats, he said. It's not about going out and finding more novel habitats.

Christner said the team that wrote the paper in Nature is the dream team of polar biology. Besides the MSU-affiliated scientists, the co-authors include Amanda Achberger, a graduate student at Louisiana State University Carlo Barbante, a geochemist at the University of Venice in Italy Sasha Carter, a postdoctoral researcher at the University of California in San Diego and Knut Christianson a postdoctoral researcher from St. Olaf College in Minnesota and New York University.

"I hope this exciting discovery will touch the lives (both young and old) of people throughout the world and inspire the next generation of polar scientists," Priscu said.


Scientists ‘shocked’ to find life in extreme depths under Antarctic ice

0:50 Scientists find unexpected sea life on boulder under Antarctic ice shelf
  • comments Leave a comment
  • facebook Share this item on Facebook
  • whatsapp Share this item via WhatsApp
  • twitter Share this item on Twitter
  • email Send this page to someone via email
  • more Share this item
  • more Share this item

Several alien-like organisms have been found thriving on a boulder far below Antarctica‘s ice shelf, in one of the planet’s most extreme environments where food, heat and sunlight are almost non-existent.

A team of geologists stumbled upon the colony of sponge-like lifeforms and animals while drilling for sediment cores beneath the Filchner-Ronne Ice Shelf, according to their findings published Monday in the Frontiers in Marine Science journal. They had no intention of looking for life, but they found it through a pure fluke.

Rock-hunters with the British Antarctic Survey cut through 870 metres of ice to get to the water far below, then tried to plunge a drill into the seafloor when they struck a boulder instead.

Scientists dropped a GoPro camera down the hole to investigate the obstruction and were shocked when they pulled it back up to review the footage.

In the video, the GoPro camera falls through the hole and clanks off a boulder before settling on the seafloor with its lens pointed up. The camera is tilted enough to reveal several moss-like organisms and tiny animals growing under the rock — including some with long stalks that wave in the blackness below the ice. Researchers counted 16 sponges and at least 22 unidentified animals on the rock.

View image in full screen

The scientists were stunned to find anything alive in the extreme environment below the ice shelf, where conditions are even more unforgiving than in the pitch-black depths of oceans in warmer parts of the world.

“There’s all sorts of reasons they shouldn’t be there,” marine biologist and lead study author Huw Griffiths, of the British Antarctic Survey, told the New Scientist.

“It’s slightly bonkers,” Griffiths added in a separate interview with The Guardian. “Never in a million years would we have thought about looking for this kind of life, because we didn’t think it would be there.”

Deep-ocean creatures survive by feeding on each other, on swirling plankton or on dead plants and animals that fall down from the more well-lit layers of the water column. However, conditions are much more bleak under the ice shelf, where there are few lifeforms to deliver scavenger meals to the layers below.

Nevertheless, the lifeforms on the rock somehow managed to survive with over one kilometre of ice and nearly-empty water overhead, researchers say. The nearest open water is 260 kilometres away, although food would’ve had to come from an even greater distance based on the direction of underwater currents.

Griffiths says the organisms are likely filter feeders that capture tiny bits of organic material from the water. Their mere existence suggests that underwater currents can sweep food across distances that scientists once thought impossible.

“This isn’t some graveyard where a few things cling on,” Griffiths said. “It’s more complicated than we thought.”

The study authors plan to examine the area in more detail in the future, as there might be some never-before-seen species living in the depths below the ice.

“It was a real shock to find them there,” Griffiths said. “But we can’t do DNA tests, we can’t work out what they’ve been eating, or how old they are. We don’t even know if they are new species, but they’re definitely living in a place where we wouldn’t expect them to be living.”


Life found beneath Antarctic ice sheet 'shouldn't be there'

The inadvertent discovery of sea life on a boulder beneath an Antarctic ice shelf challenges our understanding of how organisms can live in environments far from sunlight, according to a team of biologists.

James Smith and Paul Anker at the British Antarctic Survey drilled through the 900-metre-thick Filchner-Ronne ice shelf and dropped a camera down the hole in search of mud on the seabed. To their surprise, it revealed a boulder ringed by animals. Footage appears to show 16 sponges, accompanied by 22 unidentified animals that could include barnacles. It is the first time that immobile life like these creatures has been found beneath an Antarctic ice sheet.

More videos: The world’s most extraordinary animals

“There’s all sorts of reasons they shouldn’t be there,” says Huw Griffiths at the British Antarctic Survey, who analysed the footage. He thinks the animals, which are probably filter feeders, survive on nutrients carried in the -2°C water. The conundrum is that they are so far from obvious nutrient sources, given that the boulder is located 260 kilometres from the open water at the front of the Filchner-Ronne ice shelf where photosynthetic organisms can survive.

What’s more, the sponges’ food is probably travelling from even further afield, says Griffiths. Given what we know about the ocean currents in the area, the nearest up-current source of sunlight appears to be 600 kilometres away.

Advertisement

Read more: Life below Antarctic ice survives on ancient forests

It isn’t yet clear whether the rock-hugging animals are new to science, how long they live – some Antarctic glass sponges are more than 10,000 years old – or how often they feed, be it once a year, a decade or a century. But there are signs that the life on this single boulder isn’t a one-off: filming also captured a single sponge on another rock nearby.

A British Antarctic Survey camera travelling down a 900-meter-long bore hole in the Filchner-Ronne ice shelf (the animal in the image is unrelated to the discovery)

Dr Huw Griffiths/British Antarctic Survey

The find is significant because it suggests life in Antarctica’s harshest environments is more adaptable and more diverse than thought.

“We’ve discovered this isn’t some graveyard where a few things cling on, it’s more complicated than we thought,” says Griffiths. As ice sheets collapse in a warming world, species such as those found on the boulder may prove to be unable to respond to rapid changes.

Learning more about how the organisms have adapted to their freezing home far from food may also give us clues about how life evolved how life evolved during a “snowball Earth” period hundreds of millions of years ago in which the planet was covered in ice during.

Marvel at glaciers, icebergs and ice floesOn a New Scientist Discovery cruise of the Antarctic

Griffiths now wants to study the animals more closely, but it won’t be easy in such a remote, harsh place. Tiny, remotely operated vehicles (ROVs) lowered down a borehole in the ice are one option that may unlock the answers.

Journal reference: Frontiers in Marine Science, DOI: 10.3389/fmars.2021.642040


Life Under Antarctica's Ice

Sunlight glared off of the Antarctic Ice Sheet. Slawek Tulaczyk, a 46-year-old glaciologist, squinted in the slanted summer rays as he watched a drama unfold 600 feet away.

A Hercules military cargo plane sat stranded, unable to take off. Its skis had frozen to the snow. The plane had just dropped off Tulaczyk along with 12 workers and 10,000 pounds of gear. They were here to probe one of the last unexplored places on Earth. Beneath the snow’s deceptively flat surface, under 2,600 feet of ice, lay a mysterious lake that human eyes had never seen. Tulaczyk, from the University of California in Santa Cruz, had waited six years for a chance to investigate this hidden body of water, called Subglacial Lake Whillans.

Now, as he watched the Herc make its second attempt to take off, he worried. Tulaczyk’s flight was the first to shuttle expedition scientists, engineers, technicians and gear to the field, and a stranded plane could prevent the rest of the crew and the last of the equipment from arriving in time.

The Herc’s four propellers roared, kicking up a blizzard of snow. The plane did not move.

Four men shoveled around the Herc’s skis, trying to free them. This cold-blooded butterfly could stay alighted on the ice sheet for only so long. If its engines were shut down for more than a few minutes, they might not restart in the cold.

Lake Whillans had likely not seen the light of day for hundreds of thousands of years, but Tulacyzk and the others who landed that day intended to see what was under the ice. They intended to drill into the lake and sample its water and mud. They intended to lower a camera into its belly. And they intended to find out what, if anything, might live there.

As Tulaczyk watched the Herc on Jan. 17, 2013, the lake remained a mere silhouette pieced together from noisy geophysical measurements involving radar, lasers shot down from satellites and the seismic echoes of shock waves released by explosives detonated in shallow holes in the ice.

But for scientists around the world, tapping into this humble lake had come to symbolize a major milestone in exploration. Almost 10 percent of the planet’s land area sits locked under glacial ice, where humans have never ventured. Exploring subglacial lakes could help answer many important questions: whether, for example, global warming might accelerate as Antarctica’s ice recedes. Sampling Lake Whillans could also provide hints about what kind of life might survive in icy worlds elsewhere in the solar system.

Getting into the lake represented a monumental task. A convoy of tractors had already towed 1.2 million pounds of drilling gear 600 miles from the coast of Antarctica, where McMurdo Station served as a base. Testing of the drill in McMurdo, and subsequent weather delays, had forced the expedition onto a critically tight schedule. Even as drilling was about to begin, the Antarctic summer and workable conditions were nearing an end — giving the team no more than 14 days. “Often fieldwork in this part of Antarctica is like trench warfare,” where you dig in and work for months, said Tulaczyk a few days before. “What we are trying to do is a blitzkrieg.”

Tulaczyk considered this as he watched the Herc rev its engines a third time. Its body shuddered. Its skis broke loose. The 125,000-pound plane lumbered forward, plowing the airstrip in both directions — a maneuver that lightened the plane’s load by incinerating several thousand pounds of fuel.

As the Herc traversed the skiway a fourth time, eight solid-fuel rockets mounted on its sides ignited, heaving the plane into the air.

Tulaczyk sighed with relief. The team’s goal lay tantalizingly close, only half a mile directly below. But, as the plane’s departure had showed, in these conditions even seemingly straightforward tasks, like melting a hole in the ice, often prove difficult.

The story leading to Lake Whillans extends back more than 50 years. For most of the 20th century, the Antarctic Ice Sheet was viewed as timeless, unchanging. A few scientists even suggested that nuclear waste be stored permanently inside it.

But in the latter half of the 20th century, a new technique, called ice-penetrating radar, allowed scientists to see through broad swaths of the ice and revealed entire buried mountain ranges, as tall as 9,000 feet. In the late 1960s and throughout the 1970s, Hercules aircraft with downward-looking radars flew thousands of miles of survey lines across the continent to map the subglacial landscape. This view changed the way scientists thought of Antarctica.

Glaciologists also noticed that, in some places, the ordinarily jagged landscape beneath the ice was perfectly flat and the radar reflection unusually bright — indicating water instead of rock.

People didn’t expect to find lakes under the ice, but today, over 200 are known to exist in Antarctica. The lakes are fed by geothermal heat that seeps up from the Earth’s interior, melting away the bottom of the ice sheet at a rate of several dime-thicknesses per year and liberating water from the ice.

In the mid-1990s, a lake containing 1,300 cubic miles of water (as much as Lake Michigan) was detected 12,000 feet below the surface of the ice in East Antarctica, beneath where the Russians had spent years drilling into the ice sheet to study its history. When the Russians’ drill came within 600 feet of the underlying lake, now called Lake Vostok, the ice that they were bringing up suddenly changed, from transparent to dirty, dotted with specks of mud. This dirty ice represented muddy water from Lake Vostok that had frozen back onto the bottom of the ice sheet.

John Priscu, a lake biologist from Montana State University in Bozeman, got his hands on a pound and a half of this dirty ice. Priscu had already found bacteria and algae thriving in small lakes along the coast of Antarctica. Only the upper 10 to 30 feet of water in these lakes was frozen as ice, so sunlight filtered through, allowing life to power itself through photosynthesis. But a lake as deeply buried as Vostok would be entirely dark, so any life there would have to use some other energy source.

At that time, the question of what life might inhabit Lake Vostok was becoming increasingly relevant to people who were looking for life elsewhere in the solar system. Space probes had found an ocean of water inside Jupiter’s moon Europa, locked beneath a shell of ice five to 10 miles thick. Scientists speculated whether life might inhabit that dark ocean — a breathtaking possibility, says Priscu, when you consider that the ice-covered oceans of Europa and other moons orbiting Jupiter and Saturn actually contain five to six times as much water as all the oceans on Earth. Lake Vostok was the perfect analog on Earth to investigate what life, if any, might survive in these sunless, extraterrestrial oceans.

Sure enough, Priscu found dead or dormant cells in the dirty Vostok ice — up to 600,000 per cubic inch. Skeptics speculated that the cells had come not from the ice itself but from the 100,000 pounds of kerosene drilling fluid that the Russians kept inside the borehole above Lake Vostok, to keep it from freezing shut. Priscu never got to sample Vostok directly to confirm his find because drilling the rest of the way into it was delayed. People feared that kerosene in the borehole would spill into the pristine lake when it was finally penetrated.

By 2007, though, another plan was taking shape. Satellite measurements had just revealed the existence of Lake Whillans under half a mile of ice in West Antarctica. The lake was 7.5 miles long, 5 miles wide and 25 feet deep.

Tulaczyk became the first researcher to visit Lake Whillans in November 2007. A glaciologist rather than a biologist, he wanted to investigate a question critical to climate change: Do subglacial rivers and lakes lubricate the movement of ice over land — and might they somehow accelerate a glacier’s flow into the ocean, triggering rapid sea level rise?

Tulaczyk’s team installed instruments on the ice surface above Lake Whillans to monitor movement of the ice sheet. (Read Douglas Fox's story about this research expedition in "The Ground Zero of Climate Change," DISCOVER, September 2008 .)

That expedition was an important first step, but understanding the physics and biology of Lake Whillans would ultimately require drilling into it. Tulaczyk, Priscu and dozens of other scientists made plans. They would bore through the ice with a jet of hot water instead of a metal drill surrounded by kerosene.

Hot water drilling still posed challenges: A borehole filled with water would quickly refreeze, and the hole could still collapse shut under the sheer weight of the surrounding ice sheet. The National Science Foundation funded the ambitious project, and starting in November 2012, more than 30 scientists, drillers and technicians made their way to McMurdo Station on the coast to prepare for their push to Lake Whillans. The group included separate teams of biologists, geologists and glaciologists from a dozen institutions. Several flights in January 2013 would transport them and some scientific instruments (too fragile to be towed in the convoy) from McMurdo to Lake Whillans.

The first flight, the one carrying Tulaczyk, finally landed at Lake Whillans on Jan. 17 due to weather, it was 13 days later than planned. Such delays, together with uncertainties about how quickly drilling would go, increased the chances that the lake wouldn’t be reached, or that efforts to sample it would be crippled. But over the next five days, three more flights managed to deliver most of the remaining scientists and gear. All that remained was the task of boring through the ice and keeping the narrow, ephemeral portal open for several days.

Whillans drill camp sits 380 miles from the South Pole, a constellation of faint dots nearly invisible through the membrane of mist that often cloaks West Antarctica during the summer. Up close, the camp is industrial in scale.

Each dot represents a truck-size shipping container welded onto a massive sled. The drill comprises a dozen of these sleds, arranged end to end like a segmented, metallic organism. Segments one, two and three, at the head of the beast, house generators and transformers that convert jet fuel into 450,000 watts of electricity. In segment four, water (from melted snow) is sterilized using ultraviolet radiation and filtration. The water then flows through woven Kevlar-reinforced hoses to segments five and six, where it is heated and pressurized. Then in segment seven, the water enters a section of hose more than half a mile long, coiled around a spool as wide as a school bus. As drilling began on Jan. 23, the hose was gradually unspooled into a hole in the ice sheet. Hot water gushed from the nozzle.

This machine was built by seven ice drillers from the University of Nebraska in Lincoln: a motley crew of college-educated guys who fled the reliable monotony of NASA or biomedical engineering jobs in search of adventure. Dressed in battered Carhartt overalls and grease-stained gloves, they operate the drill, patrolling its far-flung appendages on foot, communicating by handheld radios as they turn valves to adjust the flow of water.

“You just want to keep everything warm and moving as much as you can,” said driller Dar Gibson, a former meteorologist, one night as the drill was halted for repairs. Shutting down is a race against time: Slowdowns can cause clots of ice to form in hoses, the mechanical equivalent of a blocked coronary artery.

At 6:30 p.m. Jan. 25, after two days of drilling, the final approach into Lake Whillans began. The drill hose dangled 2,480 feet down a 20-inch-wide hole in the ice. The lead driller, Dennis Duling, a 61-year-old former farmer with a gray beard, sat in the control room, his calloused hand on a mouse, surveying sensor readings on a computer. Those readings encompassed his secondhand knowledge of the world half a mile below — a world he must navigate by feel rather than sight.

Because of harsh conditions in the borehole, Duling and his men have no camera on the drill itself. They must infer what is happening thousands of feet below using proxy measurements from three sensors. One sensor counts the revolutions on the spool reeling out the drill hose (this data is used to estimate the depth of the hole) another sensor measures the weight of the dangling hose, revealing if the hose goes slack because it has bumped against an obstruction a third sensor monitors pressure and detects if the water level in the hole rises or falls — potential evidence that the lake has been reached.

Eying this data from the sensors, Duling ordered the drilling slowed to a crawl, worrying that they were nearing the lake and trying to avoid stirring up mud. “We don’t want to blast our way in,” he said. On the night of Jan. 25, no one knew at what exact depth they would break through. It would become a vexing question.

The drill appeared to break into the lake at 12:10 a.m. Jan. 26 the hose was pulled up so a camera could be lowered down the hole to confirm the break-in. Unfortunately, that camera never reached the bottom: At 2,300 feet, the hole split into two branches, preventing the camera from being guided deeper.

The camera was withdrawn from the hole and the drill hose lowered down to the point of the branch. Hot water was pumped in with the goal of melting the branch into a single, wide passage through which the camera could later be lowered.

At 7 p.m. Jan. 26, the camera was lowered a second time. People crowded into the control room to watch the live feed. The camera encountered the same branch at 2,300 feet the hot water drill had failed to solve the problem. This time, though, in a lucky break, the camera was successfully jostled down past the intersection. People in the control room cheered.

The camera eased down 50 feet. The hole expanded, contracted, then widened again. Then the camera came to rest. A second or two passed before people understood what they were seeing.

The camera lay on a floor of white. Of ice. The hole had dead-ended. “Holy cow,” said someone, in disappointment.

The drillers soon figured out the problem. A sensor on the drill hose wasn’t calibrated properly and had overestimated the length of hose fed into the hole. The drill was stopped at least 100 feet short of the lake.

“When you come down here, you get your nose bloodied up,” said Duling. “It’s all right. We can handle it.” He appeared tired, resigned. “We will drill one more time.”

Twenty-four hours later, on Jan. 27, a banter of dry gallows humor circulated among the drillers. “You guys want to watch Thelma and Louise ?” crackled one of them over the radio, a dude with a heavy wrench and thick beard deflecting feelings of anxiety with a chick-flick reference.

“Only if we can hold hands and cry,” replied Gibson into his handheld. Gibson sat in the control room, where people gathered to see the camera descend a third time down the hole, after another round of drilling.

The camera passed 1,600 feet. Undulations in the hole’s circular walls scrolled over the monitor like contours of a cosmic wormhole. Then, the image dissolved in haze. All sense of motion ceased.

A conversation sprang up in the dark room. Was the water cloudy, or had the camera malfunctioned? “Are we still going down?” Gibson asked into his radio.

“We are,” crackled the reply. “Just coming up on 640 meters [2,100 feet].”

Minutes trickled past. The blur on the monitor darkened to brown. Cable “just went slack,” crackled the radio. “We just hit the bottom.” The camera rested 2,626 feet below.

Swirling silt settled. A view of the lake coalesced.

The camera lay on its side, its lens gazing across a muddy floor strewn with clumps. Wisps of mud drifted in the water. The image, knitted in rows of grainy pixels, echoed the first-ever pictures of the Martian surface beamed back by the Viking lander 36 years ago — an image of a place never before seen by humankind.

Contrary to expectations, the water itself was only 5 feet deep, not 25 feet. Radar surveys had overestimated the lake’s depth by mistaking 20 feet of gooey mud forming the lake bed for water, said Tulaczyk during a hastily called meeting. “This lake is old enough to have filled with sediments for the most part.” Notwithstanding that surprise, the team would finally have a chance to look for life beneath the ice sheet.

At 6:20 a.m. Jan. 28, half a dozen people in sterile white suits gathered at the drill platform, awaiting the first sample of Lake Whillans water.

A taut cable inched out of the borehole. Brent Christner, a microbiologist from Louisiana State University, chipped globs of frost off the cable with a hammer. An opaque bottle rose into view. Priscu carried it into a laboratory. People crowded in as the first water from Subglacial Lake Whillans was decanted into a clear tube.

The liquid was honey-colored. An electrode was dipped in — a number flashed onto an LCD. The water conducted electricity strongly, evidence that it was laden with mineral salts that could serve as food for microbes. A whoop of excitement went up.

The subglacial environment is often described as extreme. But Lake Whillans has turned out to be surprisingly hospitable.

The lake registered at just 31 degrees Fahrenheit, slightly warmer than the coastal seas near McMurdo Station, which teem with sea stars, 100-pound toothfish and other living things. Pressure from the ice sheet overhead keeps the subglacial water liquid by lowering its freezing point several degrees.

Lake Whillans also contains oxygen, which is injected into the subglacial space by air bubbles released as the ice sheet melts. It would be enough oxygen, in some cases, to support worms, starfish and other marine invertebrates on the seafloor.

The spot where Lake Whillans sits today was once a shallow seafloor. Reed Scherer, a marine micropaleontologist from Northern Illinois University, saw evidence of this when he smeared mud from the lake onto a glass slide.

Scherer placed the slide under a microscope and twisted a knob. A glassy object snapped into focus — a round disk, serrated on the edge, perforated with dimples — the shell of an aquatic microscopic organism called a diatom. “Probably Miocene,” he said. “Likely 10 to 15 million years old.” The slide contained around a hundred crushed diatom shells.

What is now Lake Whillans was probably covered and uncovered by the ice sheet dozens of times as the climate swung back and forth over the past 20 million years. The ice most recently rolled over the lake sometime between 120,000 and a million years ago, depending on which of several warming episodes the ice sheet did or didn’t withstand. Any life that exists in the lake today may represent hangers-on from its ice-free time.

But any survivors needed to overcome a major challenge. The ice cut off sunlight and photosynthesis — the main source of energy for most ecosystems on Earth’s surface. So subglacial life, if present, would have to power itself through the chemical breakdown of minerals instead.

The honey color of that first sample of Whillans water provided a hint: a sign of tiny mineral grains (pulverized by glaciers), some smaller than a red blood cell. That glacial grinding turned the minerals into good microbe food, much as the milling of wheat into flour makes it more digestible to humans.

On Jan. 28, Trista Vick-Majors, one of Priscu’s Ph.D. students, took a long-awaited step: She added DNA-sensitive dye to a sample of lake water — the first attempt to detect life in Lake Whillans. As she viewed it through a microscope, she saw specks of green shining against a background of black — cells glowing in response to the dye — as many as 1.6 million cells in each cubic inch of water. Those cells were the first ever found unambiguously in a subglacial lake.

A portrait of life beneath Antarctica’s ice will take time to emerge. Louisiana State University microbiologist Christner is using DNA sequencing to census hundreds of microbe species from the lake. It will provide a glimpse of what taxonomic groups they belong to.

Christner’s and Priscu’s teams are also growing microbes from more than 500 cultures collected from the lake. “We may be coming up with cultures that people study for the next 50 years,” says Christner.

Understanding microbial life and the mineral breakdown that it incites under the ice sheet could help answer some momentous questions about whether global warming will speed up as Antarctica’s ice recedes. Some scientists believe that microbes under the ice may have produced billions of tons of methane — a potent greenhouse gas that could escape as the ice retreats, causing warming to accelerate.

On Feb. 1, Tulaczyk and his students made one last use of the borehole. They lowered a string of vibration sensors into it. The bottom sensor hung 60 feet above the lake. Those sensors, which the ice would encroach on and eventually envelop, would document the private life of Lake Whillans over time, recording rumbles of turbulence and tumbling rocks as currents washed through the lake. This information would help Tulaczyk understand whether subglacial water lubricates the flow of ice, and whether it might play a role in the runaway acceleration of glaciers that has occurred in some parts of Antarctica. The hole was covered in plywood, and snow piled on top.

A mile west stood 21 squat silhouettes, backlit in the afternoon sun. The team had bulldozed these snow platforms into existence. Twenty sleds and 700,000 pounds of gear would soon be parked atop them for winter, safe above the snowdrifts that would unfurl for half a mile in their wakes.

As winter darkness falls and the mercury drops to 50 degrees below zero, those parked sleds remain a gesture of hope: If budgets allow, Tulaczyk and Priscu will return next year, drill more holes and continue exploring Antarctica’s hidden world.


Huge water features

A tour around this subglacial landscape would take you first to the largest lake under the ice: Lake Vostok. At 12,500 square kilometres and with an average depth of 430 metres, Lake Vostok is the world’s sixth-largest lake by volume, but as it lies beneath some 3.5km of ice, it’s not easy to visit.

You can’t see it, but it’s there: Lake Vostok’s location in East Antarctica. NASA

Using ice-penetrating radar and seismic techniques, scientists have mapped Lake Vostok to understand its origins. They have found that it may be up to 15 million years old. The lake has circulation patterns driven by freezing and thawing of the overlying ice, and even has small lunar tides.

Lake Vostok was discovered decades ago, but what is thought to be the second-largest lake under the ice sheet was first observed only this year. It is in Princess Elizabeth Land, East Antarctica, known as the “last pole of ignorance” because until recently it was virtually unmapped.

This region is also home to a huge canyon system, which extends all the way from the ice sheet interior to the coast. The system is as deep as the Grand Canyon but 100km longer.

Map of subglacial lake locations and ice thickness. NSIDC (Blakenship et al., 2009 Smith et al., 2012)


Life Under the Lake Ice

Having just completed the tortuous 48-hour journey from the South Pole to the US west coast, John Priscu is suffering from more than his fair share of jet lag. But his tiredness can’t mask the excitement in his voice. After weeks of intense field work in Antarctica, he and his team have become the first to find life in a lake trapped under the frozen continent’s ice sheet.

&ldquoLake Whillans definitely harbours life,&rdquo he says. &ldquoIt appears that there lies a large wetland ecosystem under Antarctica&rsquos ice sheet, with an active microbiology.&rdquo

The lake in question is a 60-square-kilometre body of water that sits on the edge of the Ross Ice shelf in West Antarctica. To reach it, Priscu, a glaciologist at Montana State University in Bozeman, and his team had to drill down 800 metres of ice.

They arrived at their goal on 28 January, when their environmentally clean hot-water drill broke through to the lake’s surface. What they found was a body of water just 2 metres or so deep &mdash much shallower than the 10&ndash25 metres seismic surveys had suggested, although Priscu notes that the lake may well have deeper spots.

The team put a camera down the borehole to make sure that the borehole was wide enough for sampling instruments to be deployed and returned safely. It was, and over the next few days, the scientists collected some 30 litres of liquid lake water and eight sediment cores from the lake&rsquos bottom, each 60 centimetres long.

What precious stuff they had retrieved soon became clear under the on-site microscope. Both water and sediment contained an array of microbes that did not need sunlight to survive. The scientists counted about 1,000 bacteria per millilitre of lake water &mdash roughly one-tenth the abundance of microbes in the oceans. In Petri dishes, the bacteria show a &ldquoreally good growth rate&rdquo, says Priscu.

&ldquoThese are wonderful findings, a major discovery indeed,&rdquo says Martin Siegert, an Antarctic researcher at the University of Bristol, UK, who led a UK expedition to Lake Ellsworth, another subglacial body of water on the continent, in December. Unfortunately, technical difficulties halted the UK team&rsquos drilling effort.

Cool and collected

The exact nature of the life unearthed by the US team will now be established by DNA sequencing and other tests. It will take at least a month to do the basic work, says Priscu.

&ldquoWhat we are all dying to find out now is, of course, &lsquowho&rsquos there&rsquo and &lsquowhat&rsquos their life style’,&rdquo he says.

Researchers hope that the survival strategies of the subglacial microbes might offer clues to what the biology of extraterrestrial life might be like &mdash Jupiter&rsquos moon Europa, for instance, is thought to host a large sub-surface ocean of water where such life might be able to exist.

As photosynthesis is impossible without sunlight, the Lake Whillans bacteria must get their energy from a different source. This could be existing organic material, or, like the &lsquochemotrophs&rsquo found in gold mines and near deep-sea hydrothermal vents, the bacteria might run on chemical reactions involving minerals in the Antarctic bedrock and carbon dioxide dissolved in lake water.

&ldquoWe have been allowed a glimpse into Antarctica&rsquos subglacial world,&rdquo Priscu says. &ldquoI&rsquom sure our results will change the way we view that continent.&rdquo


Cold, Dark and Alive! Life Discovered in Buried Antarctic Lake

Antarctica, the coldest place on Earth, teems with microscopic life. Tiny organisms dwell on the ice and live inside glaciers, and now, researchers confirm, a rich microbial ecosystem persists underneath the thick ice sheet, where no sunlight has been felt for millions of years.

Nearly 4,000 species of microbes inhabit Lake Whillans, which lies beneath 2,625 feet (800 meters) of ice in West Antarctica, researchers report today (Aug. 20) in the journal Nature. These are the first organisms ever retrieved from a subglacial Antarctic lake.

"We found not just that things are alive, but that there's an active ecosystem," said lead study author Brent Christner, a microbiologist at Louisiana State University in Baton Rouge. "If you had to think up what would be the coolest scenario for an ecosystem in Antarctica, you couldn't make this up." [See Photos of Lake Whillans' Drilling Project & Microbial Life]

Cold, dark and alive

Antarctica has nearly 400 lakes trapped under its ice sheet. Some of them &mdash like Lake Whillans &mdash are connected by rivers and streams. Others are deep, isolated basins like Lake Vostok, where drillers have yet to successfully recover uncontaminated water samples. The new Lake Whillans discovery raises scientists' hopes that these other hidden waterways also carry life.

"This is a landmark paper for the polar sciences," said Martyn Tranter, a glaciologist at the University of Bristol in the United Kingdom, who was not involved in the study. "This paper is bound to stimulate further calls for subglacial lake research."

Drillers broke through to Lake Whillans in January 2013, after years of planning and more than $10 million spent by the National Science Foundation. The team, called WISSARD, used a custom hot-water drill with its own decontamination system. Within a day of pulling out the tea-colored water, tests done in a temporary lab confirmed the lake sparked with life. Researchers returned to the United States with 8 gallons (30 liters) of lake water and eight sediment cores from the lake bottom. Scientists at Montana State University, the University of Tennessee and other institutions parsed out the precious samples, growing cultures of different cell types and sequencing the DNA. The results show evidence for 3,931 species of single-celled life in Lake Whillans. [Video: Life Discovered in Subglacial Lake Whillans]

"We were surprised about the number of organisms," Christner said. "It's really not that different than the number of organisms in a lake on the surface."

How life persists

Living without sunlight, all of the lake organisms rely on minerals in the water and lake muck for the energy needed to "fix" carbon dioxide, turning it into organic compounds. The most abundant microbe is an archaea that lives in the water (rather than mud) and oxidizes ammonium. When the archaea die, they become food for another group that oxidizes sulfur for energy, Christner said. The second most common group of microbes oxidizes iron. Yet another group of bacteria chomps on methane.

"These are opportunists that are using every available energy source," Christner said.

Crushed under ice, Lake Whillans is not like a pond or lake at the surface. The environment is more like the deep ocean floor, which is cold and starved for nutrients, Christner said. The water's muddy color comes from glacial flour &mdash pulverized rock that is so fine it barely settles in liquid.

The oddly shaped pool is only 6.5 feet (2 m) deep and 23 square miles (60 square kilometers) in size. It sits on the side of a hill, trapped in an ice pocket by the weight of the ice above. The water temperature is only slightly below freezing, at 31.1 degrees Fahrenheit (minus 0.5 degrees Celsius). Antarctica's stream network regularly fills and drains Lake Whillans like a bathtub on a five- to 10-year cycle.

The sea flooded Lake Whillans' home more than once before Antarctica iced over. The lake's ammonium and methane likely came from decomposing organic matter in these ancient marine sediments, the researchers said.

"This area is like southern Louisiana with a kilometer [half-mile] of ice over it," Christner said.

Life on other planets?

The team would like to track down the origin of Lake Whillans' life &mdash whether it arrived from elsewhere, brought in by ice or rivers, or was trapped in place, in the old ocean sediments.

Only bacteria and archaea have been found so far, but the researchers have not thoroughly tested for more complex eukaryotic life, the kind of cells that make up animals such as the worms that dwell in Antarctica's surface lakes. However, they did not expect to encounter such organisms, because the subglacial lake is energy-starved.

"It's likely that different types of microbes inhabit different types subglacial lakes closer to the center of Antarctica, particularly those that are away from the former marine sediments that underlie big areas of Antarctica," Tranter said.

The findings at Lake Whillans also provide a unique glimpse into how life may survive on other planets, such as within Mars' ice cap or beneath the icy exterior of Jupiter's moon Europa.

"I think this does strengthen the case for finding life on icy bodies," Christner said.


Antarctic Stunner: Mysterious Creatures Discovered Under a Half Mile of Ice

Matt Simon

The animals were found in a remote drill site on the Filchner-Ronne Ice Shelf. British Antarctic Survey

This story was originally published by Wired and is reproduced here as part of the Climate Desk collaboration.

Bivouacked in the middle of the Filchner-Ronne Ice Shelf—a five-hour flight from the nearest Antarctic station—nothing comes easy. Even though it was the southern summer, geologist James Smith of the British Antarctic Survey endured nearly three months of freezing temperatures, sleeping in a tent, and eating dehydrated food. The science itself was a hassle: To study the history of the floating shelf, he needed seafloor sediment, which was locked under a half mile of ice.

To get to it, Smith and his colleagues had to melt 20 tons of snow to create 20,000 liters of hot water, which they then pumped through a pipe lowered down a borehole. It took them 20 hours to melt through the ice inch by inch, finally piercing through the shelf.

Next, they lowered an instrument to collect the sediment, along with a GoPro camera. But the collector came back empty. They tried once more. Still empty. Again, nothing comes easy here: Each round trip of the instrument took an hour.

Later that night in his tent, Smith watched the footage and recognized a rather glaring problem. The video shows a descent through 3,000 feet of blue-green ice, which suddenly terminates, opening up into dark seawater. The camera coasts another 1,600 feet until the seafloor finally comes into view—mostly light-colored sediment, which Smith was after, but also something dark. That dark thing turned out to be a rock, which the camera hits with a thud, tumbling face-down into the sediment. The camera quickly rights itself and scans the rock, revealing something the geologists hadn’t been after at all. In fact, it was something highly improbable: life.

“It’s like, bloody hell!” Smith says. “It’s just one big boulder in the middle of a relatively flat seafloor. It’s not as if the seafloor is littered with these things.” Just his luck to drill in the only wrong place.

Wrong place for collecting seafloor muck, but the absolute right place for a one-in-a-million shot at finding life in an environment that scientists didn’t reckon could support much of it. Smith is no biologist, but his colleague, Huw Griffiths of the British Antarctic Survey, is. When Griffiths watched the footage back in the UK, he noticed a kind of film on the rock, likely a layer of bacteria known as a microbial mat. An alien-like sponge and other stalked animals dangled from the rock, while stouter, cylindrical sponges hugged the surface. The rock was also lined with wispy filaments, perhaps a component of the bacterial mats, or perhaps a peculiar animal known as a hydroid.

The rock Smith had accidentally discovered is 160 miles from daylight—that is, the nearest edge of the shelf, where ice ends and the open ocean begins. It’s hundreds of miles from the nearest location that might be a source of food—a spot that would have enough sunlight to fuel an ecosystem, and be in the right position relative to the rock for known currents to supply these creatures with sustenance.

Not to tell life its business, but it’s got no right being here. “It’s not the most exciting-looking rock—if you don’t know where it is,” says Griffiths, lead author of a new study published in the journal Frontiers in Marine Science. Since you now do know, then it means your jaw may be somewhere near the floor right about now.

We can say for certain that these animals are living in total darkness, which is fine—plenty of deep-sea critters do the same. But animals that live sessile (read: stuck in place) existences on the deep sea floor must rely on a fairly steady supply of food in the form of “marine snow.” Every living thing swimming in the water column above must one day die, and when they do, they sink to the depths. As the corpses descend and decompose, other creatures pick at them and fling off particles, tiny morsels that accumulate even on the deepest of sea floors. (When a whale dies and sinks, by the way, it’s epically known as a “whale fall.”)

This works in most parts around Antarctica, where the waters are incredibly productive. Tiny critters known as plankton feed all kinds of fish, which feed large marine mammals like seals. All this activity produces detritus—and dead animals—that one day become marine snow.

But the Antarctic critters on this particular rock don’t live under a bustling water column. They live under a half-mile of solid ice. And they can’t roam away from their rock in search of food. “The worst thing in a place where there’s not much food, and it’s very sporadic, is to be something that’s glued to the spot,” says Griffiths. So how on Earth could they be getting sustenance?

The researchers think it’s likely that the drift of this marine snow has been flipped on its side, so that the food source is moving horizontally instead of vertically. Looking at charts of currents near the drill site, the researchers determined that there are productive regions between 390 and 930 miles away. It may not be much, but it’s possible that enough organic material is riding these currents hundreds of miles to feed these creatures. That’s an extraordinary distance, given that in the deepest part of the ocean, the Challenger Deep near Guam, marine snow produced at the surface has to fall 7 miles down to reach the seafloor. To reach the animals on this Antarctic rock, food would have to travel as much as 133 times that distance—and it would have to do so by floating sideways.

Given what scientists know about currents around Antarctica, this isn’t particularly far-fetched, says Rich Mooi, curator of invertebrate zoology and geology at the California Academy of Sciences, who has studied Antarctic sea life but wasn’t involved in this new work. As seawater cools in the region, it grows more dense. “It sinks to the sea bottom and pushes water outward, radiating outward from the Antarctic,” says Mooi. “And these currents are actually the germ of many—if not almost all of—the current systems on the planet.”

As that water pushes outward, something has to fill the void. “There’s going to be some inflow to replace that,” Mooi adds. “And that inflow, even over hundreds of kilometers, is going to carry organic matter.” For our lifeforms stuck on that boulder, this would bring food. The currents could also bring new animals to add to the population on the rock.

But because the researchers couldn’t collect specimens, they can’t yet say what exactly these sponges and other critters could be eating. Some sponges filter organic detritus from the water, whereas others are carnivorous, feasting on tiny animals. “That would be sort of your headline of the year,” says Christopher Mah, a marine biologist at the Smithsonian, who wasn’t involved in the research. “Killer Sponges, Living in the Dark, Cold Recesses of Antarctica, Where No Life Can Survive.”

And Griffiths and his team also can’t yet say if mobile creatures like fish and crustaceans also live around the rock—the camera didn’t glimpse any—so it’s not clear if the sessile animals face some kind of predation. “Are they all eating the same food source?” asks Griffiths. “Or are some of them kind of getting nutrients from each other? Or are there more mobile animals around somehow providing food for this community?” These are all questions only another expedition can answer.

It does appear that sedimentation around the rock isn’t very heavy, meaning the animals aren’t in danger of being buried. “It’s kind of a Goldilocks-type thing going on,” says Griffiths of the rock’s apparently fortuitous location, “where it’s got just enough food coming in, and it’s got nothing that wants to eat them—as far as we can tell—and it’s not getting buried by too much sediment.” (In the sediment surrounding the rock, the researchers also noticed ripples that are typically formed by currents, thus bolstering the theory that food is being carried here from afar.)

It’s also not clear how these stationary animals got there in the first place. “Was it something very local, where they kind of hopped from local boulder to local boulder?” asks Griffiths. Alternatively, perhaps their parents lived on a rock hundreds of miles away—where the ice shelf ends and more typical marine ecosystems begin—and released their sperm and eggs to travel in the currents.

Because Griffiths and his colleagues don’t have specimens, they also can’t say how old these animals are. Antarctic sponges have been known to live for thousands of years, so it’s possible that this is a truly ancient ecosystem. Perhaps the rock was seeded with life long ago, but currents have also refreshed it with additional life over the millennia.

The researchers also can’t say whether this rock is an aberration, or if such ecosystems are actually common under the ice. Maybe the geologists didn’t just get extremely lucky when they dropped their camera onto the rock—maybe these animal communities are a regular feature of the seafloor beneath Antarctica’s ice shelves. There’d certainly be a lot of room for such ecosystems: These floating ice shelves stretch for 560,000 square miles. Yet, through previous boreholes, scientists have only explored an area underneath them equal to the size of a tennis court. So it may well be that they’re out there in numbers, and we just haven’t found them yet.

And we may be running out of time to do so. This rock may be locked away under a half mile of ice, but that ice is increasingly imperiled on a warming planet. “There is a potential that some of these big ice shelves in the future could collapse,” says Griffiths, “and we could lose a unique ecosystem.”

Looking for news you can trust?

Subscribe to the Mother Jones Daily to have our top stories delivered directly to your inbox.



Comments:

  1. Durango

    Cheap got stolen, was easily lost.

  2. Wamocha

    a Charming idea

  3. Weorth

    Wacker, what phrase ..., the brilliant thought

  4. Novak

    the Excellent answer

  5. Samull

    May I ask you?

  6. Leith

    In my opinion it is obvious. Try to look for the answer to your question in google.com

  7. Wilbert

    Sorry, cleared

  8. Sandy

    I think mistakes are made. We need to discuss. Write to me in PM, it talks to you.



Write a message